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Related topics 
Zeeman effect, energy quantum, quantum number, resonance, g-factor, Landé factor. 
 

Principle 
With electron spin resonance (ESR) spectroscopy compounds having unpaired electrons can be studied. 
The physical background of ESR is similar to that of nuclear magnetic resonance (NMR), but with this 
technique electron spins are excited instead of spins of atomic nuclei. The g-factor of a DPPH (Di-
phenylpikrylhydrazyl) and the halfwidth of the absorption line are determined, using the ESR apparatus. 
 

Equipment 
 

1 ESR resonator with field coils 09050-00 
1 ESR power supply 09050-93 
1 Power supply, universal 13500-93 
1 30 MHz digital storage oscilloscope 11462-99 
1 DMM, auto range, NiCr-Ni thermocou-

ple 
07123-00 

4 Screened cable, BNC, l = 750 mm 07542-11 
1 Adapter, BNC-socket/4 mm plug pair  07542-27  

3 Connecting cord, l = 500 mm, blue 07361-04 
2 Connecting cord, l = 500 mm, red 07361-01 
2 Connecting cord, l = 500 mm, yellow 07361-02 

 Options:  
1 Teslameter, digital 13610-93 
1 Hall probe, tangent., prot. Cap 13610-02 

Tasks 
This experiment deals with the investigation of the magnetic momentum of the electron spin. 

1. Determine the g-factor (Landé-factor) of the DPPH (Diphenylpicrylhydrazyl) specimen 
2. Determine the FWHM (Full Width at Half Maximum) of the absorption line 

 

Fig. 1: Experimental set-up for determining characteristic curves. 
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- The “10 A” port of the digital multimeter is then connected with a red connecting cord to the ESR 

resonator according to the following pictures: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
- After that, connect the resonator to the alternating voltage of the universal power supply with a blue 

connecting cord (Fig. 8 and Fig. 9) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
- The “plus pole” of the direct voltage is applied to the upper port of the alternating voltage with a red 

connecting cord as shown in Fig. 10 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Fig. 6  Fig. 7 

 Fig. 8  Fig. 9 

 Fig. 10 
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- In order to display the ESR-signal on the oscilloscope, connect “Phasenschieber Ausgang” to the 
“X”-port of the oscilloscope (Fig. 15 and Fig. 17) and the “Y”-port to the ESR-signal amplifier (Fig. 16 
and Fig. 17) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
- Your setup should now look like the following picture: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Fig. 15  Fig. 16

 Fig. 17 

 Fig. 18
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In the following, one has to do several settings on the ESR power supply. Therefore, we will just refer to 
the numbers given in the following picture (these numbers correspond to the numbers that you can find 
in its operating instructions): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
- Push the “Bridge balancing” (“Brücken Abgleich”) button on the ESR power supply (number “8”) 
- The “R” rotating switch of the ESR resonator should be in its middle position and the “C” rotating 

switch should be brought to its left-hand stop 
- At the oscilloscope, select the X-Y-mode (Fig. 20) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
- Select the “GND” mode for the “X”-channel and the “d.c.” mode for the “Y”-channel 
 
- The signal sensitivity for both channels should be 1 V/cm (for further information about the settings 

please read the operating instructions of the oscilloscope) 
- You should see a single point on the oscilloscope 
- Use the rotating switches “Position” to centre the displayed point exactly in the middle of the coordi-

nate system 
- After that, push button “9” on the ESR power supply (Fig. 19) and select the "d.c." mode for the "X"-

channel at the oscilloscope 
- You should see a horizontal line on the oscilloscope 
- Increase the direct voltage on the universal power supply until the digital multimeter shows about 

1.3 A 
- Now, carefully turn “C” on the resonator to the right until you see a signal appearing on the oscillo-

scope (it might be useful to increase the intensities of the “X”- and “Y”-channels to 0.5 V/cm or more 
to get a stronger signal displayed) 

 Fig. 20

8 9

 Fig. 19 
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- Remove the BNC cable from the ESR power supply that is connected to the “X”-channel of the oscil-

loscope 
- Connect the end of this BNC cable to the corresponding adapter as shown in Fig. 24 
 
 
 
 
 
 
 
 
 
 
 
 
 
- Connect the adapter to the direct voltage ports of the universal power supply (Fig. 24) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
- Pay attention to the fact, that you do not change the sensitivity of the “X”- and “Y”-channels during 

this measurement 
- Vary the direct voltage as long as a single point appears on the oscilloscope 
- When the point appears, you can change its position with the “Position” rotating switches of the os-

cilloscope until it lies on the x-axis 
- Move the point by varying the direct voltage on the universal power supply to one of the two points 

of intersection that you determined before 
- Note the current I that is now displayed on the digital multimeter  
 
- Then, move the point to the other point of intersection and note the value of the current. 
 
 

Theory and evaluation 
In general, the phenomena in this experiment can be explained with the Zeeman effect and the transi-
tions between Zeeman-levels. Therefore, we will have to shortly discuss the Zeeman-effect itself and al-
so have to talk about the basics of the atomic physics and quantum mechanics.   
First of all, there are two different atomic magnetic dipoles: on the one hand the circular currents that 
represent the electrons on their revolution around the atomic nucleus, and on the other hand the mag-
netic momentums that are dependent on the electron spin.  

 Fig. 24 

 Fig. 24 
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By the laws of the quantum mechanics, the angular momentums are quantised, i.e. they can only reach 
certain values. Therefore, the following values are possible for the orbital angular momentum: 
 

hmLz =        ( lllllm     ,1,...,2,1, −−−= ) (6) 

 
where zL  is the z-component of the orbital angular momentum, 3410626.6 −×=h Js is Planck’s quantum 

of action with 
π2
h

≡h , and ...,2,1,0  =l  a quantum number; m is called the magnetic quantum number. 

 
The spin angular momentum of an electron only has the magnetic quantum number 2

1 . Therefore, the fol-
lowing is valid: 
 

h2
1±=zS . (7) 

 
 
From this, it is reasonable, that the magnetic momentums are also quantised. They are expressed in 
units of the Bohr magneton Bμ : 
 

241027.9
2

−⋅== h
e

B m
eμ Am2. (8) 

 
It follows: 
 

Bzorbitalorbitalz mL μγμ ⋅−=⋅=,       ( lllllm     ,1,...,2,1, −−−= ) (9) 

and 

( ) Bspinzorbitalspinzspinspinz gSgS μγγμ ⋅⋅±=⋅⋅=⋅= 2
1

, . (10) 

 
 
If an electron has an orbital angular momentum L

r
 as well as a spin angular momentum S

r
, the resulting 

total angular momentum J
r

will be: 
 

SLJ
rrr

+=  

.,...,2,1, SLSLSLSLJ ++−+−−=  

 
The corresponding magnetic momentum is then: 
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One differs between two different Zeeman effects: the “normal” (without electron spin: 0=S ) and the 
“anomalous” (with electron spin: 0≠S ). When dealing with the normal Zeeman effect, only the orbital 
angular momentum is existent and therefore the external magnetic field only interacts with the orbital 
magnetic momentum. When the external magnetic field is applied, the energy levels within the atom are 
split into equally spaced energy levels: 

.
2

Bm

BL
m
e

BE

B

z
e

orbital

⋅Δ⋅=

⋅Δ⋅=

⋅Δ−=Δ

μ

μ

 (14) 

 
This splitting into several energy levels is called the Zeeman effect. 
But normally, one has to consider the electron spin as well, as it is the case in our experiment. Then, the 
external magnetic field also interacts with the spin magnetic momentum and the Zeeman interaction 
takes the form 
 

jjB mBgE Δ⋅⋅⋅=Δ μ . (15) 

 
The selection rule for magnetic transitions is: 
 

1±=Δ jm . 
 

So the distance between the two Zeeman-levels is then: 
 

BgE jB ⋅⋅=Δ μ . (16) 

 
A transition from a lower to an higher energy level is achieved by absorbing a radiant quantum whose 
absolute value is equal to the energy difference between the two energy levels. This radiant energy 
comes from the applied electromagnetic wave of frequency f within the ESR-resonator. The absolute 
value of the energy then results in: 
 

fhE ⋅= . (17) 

 
This process is called magnetic resonance.  
From this we get the condition of resonance that one has to adjust during the experiment by varying the 
magnetic resonance displacement rB  (by varying the direct voltage) and then one can calculate the 
Landé-factor according to the following equation: 

rB
j

rjB

B
fhg

fhBg

⋅
⋅

=⇔

⋅=⋅⋅

μ

μ
 (18) 

 
 

where 3410626.6 −⋅=h Js, MHz146Hz10146 6 =⋅=f , 241027.9 −⋅=Bμ Am2. After inserting these val-
ues one gets: 
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rI
g A565.2
= . (24) 

 

Evaluation 
 

1. Determination of the Landé-factor g 
 
The Landé-factor g can be expressed with the help of the resonance current rI  (see appendix): 
 

 
rI

g A565.2
= . 

 
In our sample measurement, we got the following result ( 24.1=rI A): 
          0685.2=g . 
The literature value is given as:    0037.2=g . 
 
 
 

2. Determination of the FWHM 
 

In our sample measurement, we selected a sensitivity for the “X”-channel of 0.5 V/cm and for the “Y”-
channel of 20 mV/cm.  
 
In order to determine the full width at half maximum use your measurement results for the currents 1I  
and 2I  and calculate the difference. Note your result below: 
 
 =−=Δ 21 III  
 
Then, calculate the resulting magnetic displacement BΔ by inserting IΔ  following equation (formula 23 
in the appendix): 
 

IB Δ⋅⋅=Δ −

A
T1007.4 3  

 
 

This BΔ  corresponds to the FWHM that was sought. 
 
 
In our sample measurement, we got the following results: 
 

1.0=ΔI  A 
 

41007.4 −⋅=Δ⇒ B  T. 
 

The literature value is given by: 
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